Autonomous navigation and indoor mapping for a service robot

Published: 15 November 2023| Version 1 | DOI: 10.17632/t58nf75pbd.1
Contributors:
,
,

Description

Objective: Teach the operation of the Summit platform and the Powerball robot manipulator. Simultaneous Localization and Mapping (SLAM) is a quite common and interesting problem in mobile robotics. It is the basis of safe autonomous navigation of mobile robots and the entrance to new combined applications with a manipulator for instance. Method: In order to find a solution to the SLAM problem, the ROS middleware and the MRPT were selected. Autonomous navigation was tested using two methods, the MRPT navigation ROS package, which is a reactive navigation method based on Trajectory Parameter Space (TP-Space) transformations, and the ROS navigation stack, a standard for differential drive and holonomic wheeled robots. Results: To validate the advantages and disadvantages of both approaches, a mobile robot with strong kinematic constraints (Ackermann-steering-type) known as Summit was used. As an additional work, an application using the mobile robot Summit and a robotic manipulator (Powerball) was carried out, with the intention of picking and placing objects of the mobile robot, a widely spread application among service robotics, especially, in the area of industrial logistics. Conclusions: Finally, it is concluded that with the tests carried out with the robot, it was possible to demonstrate autonomous navigation, using the two mentioned methods.

Files

Institutions

Universidad Nacional de Colombia

Categories

Automation Engineering

Licence